Image
Image
Image

Scientific Papers

  1. Árvai, C.; Mika, L.* Application of 1,4-pentanediol as a renewable solvent for copper-catalyzed Ullmann-type coupling reactions. J. Organomet. Chem. 2024, 1005 122976. | Q2 | Link

  2. Árvai, C.; Mika, L.* Recent advances in catalytic carbonylation reactions in alternative reaction media. Chin. J. Chem. 2024, 42 406–429. | Q1 | Link

  3. Wong, Y. Y.; Choi, W. T.; Mika, L. T.*; Lui, M. Y.* Valorization of the Exoskeletons of Crustaceans in Seafood Wastes to Chemicals in Renewable Solvents: A Catalytic and Mechanistic Study ACS Sustainable Chem. Eng. 2023, 88, 15350–15363. | D1 | Link

  4. Tóth, I.; Tukacs, J. M.; Mika, L. T.* Kinetic and Mechanistic Studies of the Selective Hydrogenation of (E)‐Chalcones in Biomass‐Derived γ‐Valerolactone Catalyzed by Rh−PPh3 Complexes. ChemCatChem 2023, 15, e2022014 | D1 | Link

  5. Kollár, L.; Takács, A.; Molnár, C.; Kovács, A.; Mika, L. T.*; Pongrácz, P.* Palladium-Catalyzed Selective Amino- and Alkoxycarbonylation of Iodoarenes with Aliphatic Aminoalcohols as Heterobifunctional O,N-Nucleophiles. J. Org. Chem. 2023, 88, 5172–5179. | Q1 | Link

  6. Al-Lami, M.; Pivarcsik, T.; Havasi, D.; Mika, L. T.* Isobaric Vapor–Liquid Equilibria for Binary Mixtures of Biomass-Derived Gamma-Valerolactone + 1,4-Pentanediol and 1,2-Ethanediol. Chem. Eng. Data 2023, 68, 900–908. | Q1 | Link

  7. Gelencsér, O.; Árvai, Cs.; Mika, L. T.; Breitner, D.; LeClair, D.; Szabó, Cs.; Falus, Gy.; Szabó-Krausz, Z. Effect of Hydrogen on Calcite Reactivity in Sandstone Reservoirs: Experimental Results Compared to Geochemical Modeling Predictions. Energy Storage 2023, 61, 106737. | Q1 | Link

  8. Al-Lami, M.; Szilágyi, A.; Havasi, D.; Mika, L. T.* 1,4-Pentanediol: Vapor Pressure, Density, Viscosity, Refractive Index, and Its Isobaric Vapor–Liquid Equilibrium with 2‑Methyltetrahydrofurane. Chem. Eng. Data 2022, 67, 1450–1459. | Q1 | Link

  9. Kégl, T. R.; Mika, L. T.; Kégl, T. 27 Years of Catalytic Carbonylative Coupling Reactions in Hungary (1994–2021). Molecules 2022, 27, 460. | Q1 | Link

  10. Mika, L. T.; Horváth, I. T. Homogeneous transition metal catalyzed conversion of levulinic acid to gamma-valerolactone. Adv. Inorg. Chem. 2021, 77, 1. | Q2 | Link

  11. Munaf, A.-L.; Koczka, K.; Havasi, D.; Mika, L. T.* Isobaric Vapor–Liquid Equilibria for Binary Mixtures of Gamma-Valerolactone + Toluene. J. Chem. Eng. Data202166, 658–574. | Q1 | Link

  12. Orha, L.; Papp, A.; Tukacs, J. M.; Kollar, L.; Mika, L. T.* Tetrabutylphosphonium 4-ethoxyvalerate as a biomass-originated media for homogeneous palladium-catalyzed Hiyama coupling reactions. Chem Papers 2020, 74, 4593–4598. | Q2 | Link 

  13. Tukacs, J. M.; Marton, B.; Albert, E. Tóth, I. Mika, L. T.* Palladium-catalyzed aryloxy- and alkoxycarbonylation of aromatic iodides in γ-valerolactone as bio-based solvent. J. Organomet. Chem. 2020, 923, 121407. | Q2 | Link

  14. Fodor, D.; Kégl, T.; Tukacs, J. M.; Horváth, A. K.; Mika, L. T.* Homogeneous Pd-catalyzed Heck coupling in γ-valerolactone as a green reaction medium: a catalytic, kinetic, and computational study ACS Sustainable Chem. Eng. 2020, 8, 9926–9936 | D1 | Link

  15. Munaf, A.-L.; Havasi, D.; Batha, B.; Pusztai, E.; Mika, L. T.* Isobaric Vapor-Liquid Equilibria for Binary Mixtures of biomass-derived Gamma-Valerolactone + Tetrahydrofuran and 2-Methyltetrahydrofuran J. Chem. Eng. Data202065, 3063–3071. | Q1 | Link

  16. Cséfalvay, E.*; Hajas, T.; Mika, L. T. Environmental sustainability assessment of a biomass-based chemical industry in the Visegrad countries: Czech Republic, Hungary, Poland, and Slovakia Chem Papers 2020, 74, 3067–3076 | Q2 | Link

  17. Havasi, D.; Farkas, D.; Mika, L. T.* Isobaric Vapor−Liquid Equilibria of Binary Mixtures of γ‐Valerolactone + Acetone and Ethyl Acetate J. Chem. Eng. Data202065, 419–4225. | Q1 | Link

  18. Orha, L.; Tukacs, J. M.; Kollár, L.; Mika, L. T.* Palladium-catalyzed Sonogashira coupling reactions in γ-valerolactone-based ionic liquids. Beilstein J. Org. Chem. 2019, 15, 2907–2913. | Q2 | Link

  19. Tukacs, J. M.; Sylveszter, Á. Kmecz, I.; Óvári, M.; Jones, R.; Mika, L. T.­* Continuous flow hydrogenation of methyl- and ethyl levulinate: an alternative route to gamma-valerolactone production. R. Soc. Open. Sci. 2019, 6, 182233 | D1 | Link

  20. Náray-Szabó, G.; Mika, L. T.* Conservative Evolution and Industrial Metabolism in Green Chemistry Green Chem. 2018, 20, 2171–2191. | D1 | Link

  21. Mika, L. T.*; Cséfalvay, E.; Németh, Á. Catalytic Conversion of Carbohydrates to Initial Platform Chemicals: Chemistry and Sustainability. Chem. Rev. 2018, 118, 505–613. | D1 | Link

  22. Orha, L.; Tukacs, J. M.; Gyarmati, B.; Szilágyi, A.; Kollár, L.; Mika, L. T.* Modular Synthesis of Γ-Valerolactone-Based Ionic Liquids and Their Application as Alternative Media for Copper-Catalyzed Ullmann-Type Coupling Reactions. ACS Sustainable Chem. Eng. 2018, 6, 5097–5104. | D1 | Link

  23. Racz, L.; Fozer, D.; Nagy, T.; Toth, A. J.; Haaz, E.; Tarjani, J. A.; Andre, A.; Selim, A.; Valentinyi, N.; Mika, L. T.; et al. Extensive Comparison of Biodiesel Production Alternatives with Life Cycle, PESTLE and Multi-Criteria Decision Analyses. Clean Techn Environ Policy 2018, 20, 2013–2024. | Q2 | Link

  24. Seni, A. A.; Kollár, L.; Mika, L.; Pongrácz, P. Rhodium-catalysed aryloxycarbonylation of iodo-aromatics by 4-substituted phenols with carbon monoxide or paraformaldehyde. Mol. Catal, 2018, 457, 67–73. | Q1 | Link

  25. Havasi, D.; Pátzay, G.; Stelén, G.; Tukacs, M. J.; Mika, L. T.* Recycling of sulfuric acid in the valorization of biomass residues. Period. Polytech. Chem. Eng. 2017, 61, 283–287. | Q3 | Link

  26. Pongrácz, P.; Seni, A. A.; Mika, L. T.; Kollár, L. Palladium-catalysed enantioselective hydroaryloxycarbonylation of styrenes by 4-substituted phenols. Mol. Catal. 2017438, 15–18. | Q1 | Link

  27. Pongrácz, P.; Bartal, B.; Kollár, L.; Mika, L. T.* Rhodium-catalyzed hydroformylation in γ-valerolactone as a biomass-derived solvent, J. Organomet. Chem. 2017, 847, 140–145. | Q2 | Link

  28. Horváth, I. T.; Cséfalvay, E.; Mika, L. T.; Debreczeni, M. Sustainability Metrics for Biomass-Based Carbon Chemicals. ACS Sustainable Chem. Eng.20175, 2734–2740. | D1 | Link

  29. Havasi, D.; Hajnal, Á.; Pátzay, G.; Mika, L. T.* Vapor-Liquid Equilibrium of Gamma-Valerolactone and Formic acid at p=51 kPa J. Chem. Eng. Data201762, 1058–1062. | Q1 | Link

  30. Tukacs, J. M.; Holló, A. T.; Rétfalvi, N.; Cséfalvay, E.; Dibó, G.; Havasi, D.; Mika, L. T.* Microwave-Assisted Valorization of Biowastes to Levulinic Acid. ChemistrySelect20172, 1375–1380. | Q2 | Link

  31. Wong, C. Y. Y.; Choi, A. W-T.; Lui, M.; Fridrich, B.; Horváth, A. K.; Mika, L. T.*; Horváth, I. T.  Stability of Gamma-valerolactone under Neutral, Acidic, and Basic Conditions. Struct. Chem. 201728, 423–429. | Q2 | Link

  32. Tukacs, J. M; Bohus, M.; Dibó, G.; Mika L. T.* Ruthenium-Catalyzed Solvent-Free Conversion of Furfural to Furfuryl Alcohol. RSC Adv. 20177, 3331–3335. | Q1 | Link

  33. Marosvölgyi-Haskó, D.; Lengyel, B.; Tukacs, J. M.; Kollár, L.; Mika, L. T.* Application of γ-valerolactone as an alternative biomass-based medium for aminocarbonylation reactions. ChemPlusChem 201681, 1224–1229. | Q1 | Link

  34. Silhavy B, Erdos L, Mizsey P, Koczka K, Szanyi A, Mika L, Benkő T Generation of Simulation Based Operational Database for an Acid Gas Removal Plant with Automatic Calculations. Period. Polytech. Chem. Eng. 2016, 60, 24–28. | Q3 | Link 

  35. Havasi, D.; Pátzay, G.; Kolarovszki, Z.; Mika, L. T.* Isobaric Vapor Liquid Equilibria for Binary Mixtures of -Valerolactone + Methanol, Ethanol, and 2-Propanol. J. Chem. Eng. Data201661, 3326–3333. | Q1 | Link

  36. Havasi, D.; Mizsey, P..; Mika, L. T.* Vapor-Liquid Equilibrium Study of the Gamma-Valerolactone-Water Binary System. J. Chem. Eng. Data201661, 1502–1508. | Q1 | Link

  37. Pongrácz, P.; Kollár, L.; Mika, L. T.* A step towards hydroformylation under sustainable conditions: platinum-catalysed enantioselective hydroformylation of styrene in gamma-valerolactone. Green Chem. 2016, 18, 842–847. | D1 | Link

  38. Varga; E.; Mika, L. T.; Csámpai, A.; Holczbauer, T.; Kardos, G.; Soós, T. Mechanistic investigations of bifunctional squaramide organocatalyst in asymmetric Michael reaction, observation of stereoselective retro-Michael reaction. RSC Adv. 2015, 5, 95079–95086. | Q1 | Link

  39. Tukacs, J. M.; Fridrich, B.; Dibó, G.; Székely, E.; Mika, L. T.* Direct asymmetric reduction of levulinic acid to γ-valerolactone: synthesis of a chiral platform molecule. Green Chem. 2015, 17, 5189–5195. | D1 | Link

  40. Strádi, A., Molnár, M.; Szakál, P.; Dibó, G.; Gáspár, D.; Mika, L. T.* Catalytic transfer hydrogenation in γ-valerolactone-based ionic liquids. RSC Adv. 2015, 5, 72529–72535. | Q1 | Link

  41. Fábos, V.; Lui, M.; Wong, Y. Y.; Qui, L.; Mika, L. T.; Cséfalvay, E.; Kovács, V.; Szűcs, T.; Horváth, I. T. The use of gamma-valerolactone as an illuminating liquid and lighter fluid. ACS Sust. Chem. & Eng. 2015, 3, 1899–1904. | D1 | Link

  42. Mika, L. T.; Cséfalvay, E.; Horváth, I. T. The role of water in catalytic biomass-based technologies to produce chemicals and fuels. Catal. Today, 2015, 247, 33–46. | Q1 | Link

  43. Tukacs, J. M.; Novák, M.; Dibó, G.; Mika, L. T.* An improved catalytic system for the reduction of levulinic acid to gamma-valerolactone. Catal. Sci. Technol., 2014, 4, 2908–2912. | Q1 | Link

  44. Novodárszki, G.; Rétfalvi, N.; Dibó, G.; Mizsey, P.; Cséfalvay, E.; Mika, L. T.* Production of Platform Molecules from Sweet Sorghum. RSC Adv., 2014, 4, 2081–2088. | Q1 | Link

  45. Fábos, V.; Mika, L. T.; Horváth I. T. Selective Conversion of Levulinic and Formic Acids to γ-Valerolactone with the Shvo Catalyst. Organometallics, 2014, 33, 181–189. | D1 | Link

  46. Mika, L. T.; Orha, L.; van Driessche, E.; Garton, R.; Zih-Perényi, K.; István T Horváth Water-Soluble-Phosphines-Assisted Cobalt Separation in Cobalt-Catalyzed Hydroformylation. Organometallics, 2013, 32, 5326–5332. | D1 | Link

  47. Strádi A., Molnár M., Óvári M., Frank U. R., Dibó G., Mika L. T.* Rhodium-catalyzed hydrogenation of unsaturated hydrocarbons in γ-valerolactone based ionic liquids. Green Chem., 2013, 15, 1857–1862. | D1 | Link

  48. Tukacs, J. M; Jones, R.; Darvas, F.; Lezsák, G.; Dibó, G.; Mika, L. T.* Synthesis of g-valerolactone using continuous flow reactor. RSC Adv., 2013, 3, 16283–16287. | Q1 | Link

  49. Szabolcs, Á.; Molnár, M.; Dibó, G.; Mika, L. T.* Microwave enhanced conversion of carbohydrates to levulinic acid: an essential step in biomass conversion. Green Chem. 2013, 15, 439–445. | D1 | Link

  50. Tukacs, J. M, Kiraly D., Stradi, A., Novodarszki, G., Eke, Z., Dibó, G., Kégl, T., Mika, L. T.* Efficient catalytic hydrogenation of levulinic acid: a key step in biomass conversion. Green Chem. 2012, 14, 2057–2065. | D1 | Link

  51. Zhao, X.; He, D.; Mika L. T.; Horváth I. T. Fluorous Hydrogenation. Top. Curr. Chem. 2012, 308, 233–245. | D1 | Link

  52. Zhao, X.; He, D.; Mika L. T.; Horváth I. T. Fluorous Hydroformylation. Top. Curr. Chem. 2012, 308, 275–290. | D1 | Link

  53. Mika L. T.; Tuba, R.; Tóth, I.; Pitter, S.; Horváth, I. T. Molecular Mapping of the Catalytic Cycle of the Cobalt-Catalyzed Hydromethoxycarbonylation of 1,3-Butadiene in the Presence of Pyridine in Methanol. Organometallics, 2011, 30, 4751–4764. | D1 | Link

  54. Mika, L. T.;  Orha, L.; Farkas, N.; István T. Horváth I. T. Efficient Synthesis of Water Soluble Alkyl-bis(msulfonated-phenyl)- and Dialkyl-(m-sulfonated-phenyl)-phosphines and Their Evaluation in Rhodium Catalyzed Hydrogenation of Maleic Acid in Water. Organometallics, 2009, 28, 1593–1596. | D1 | Link

  55. Fábos, V.; Lantos, D.; Bodor, A.; Bálint, A.-M.; Mika, L. T.; Sielcken, O. E.; Cuiper, A.; Horváth, I. T.  e-Caprolactamium Hydrosulfate: An Ionic Liquid Used in the Large Scale Production of e-Caprolactam for Decades. ChemSusChem, 2008, 1, 189–192. | Q1 | Link

  56. Mehdi, H.; Fábos, V.; Tuba, R.; Bodor, A.; Mika, L. T. Horváth, I. T. Integration of Homogeneous and Heterogeneous Catalytic Processes for a Multi-step Conversion of Biomass: from Sucrose to Levulinic acid, g-Valerolactone, 1,4-Pentanediol, 2-Methyl-tetrahydrofuran, and Alkanes. Topics in Cat. 2008, 48, 49–54. | Q2 | Link

  57. Horváth, I. T.; Mehdi, H.; Fábos, V.; Boda, L.; Mika, L. T. g-Valerolactone: A Sustainable Liquid for Energy and Carbon-Based Chemicals. Green Chem., 2008, 10, 238–242. | D1 | Link

  58. Csihony, Sz.; Mika, L. T; Vlád, G.; Barta, K., Mehnert, C. P. and Horváth, I. T. Oxidative Carbonylation Of Methanol to Dimethyl Carbonate by Chlorine Free Homogeneous and Immobilized 2,2′-Bipyrimidine Modified Copper Catalyst. Collect. Czech. Chem. Commun. 2007, 72, 1094–1106. | Q3 | Link

  59. Mika, L. T.; L., Sümegi L.; Tüdős, F.  Kinetic investigation of hydrigen peroxide decomposition in sec-butyl alcohol and in sec-butyl alcohol in the presence of 1,3-butadiene. Oxidation Communications, 2006, 29, 828–833. | Q3 | Link

  60. Tuba, R.; Mika, L. T.; Bodor, A.; Pusztai, Z.; Tóth, I.; Horváth, I. T. The Mechanism of the Pyridine Modified Cobalt-Catalyzed Hydromethoxycarbonylation of 1,3-Butadiene. Organometallics, 2003, 22, 1582–1584. | D1 | Link

  61. Mika, L. T.; Sümegi, L.; László-Hedvig, Zs.; Tüdős, F. Kinetic Investigation of Hydrogen Peroxide Decomposition in sec-Butanol and in sec-Butanol in the Presence of 1,3-Butadiene (in Hungarian). Hung. Chem. J. 2001, 107, 260–263. | Q3 |

Book chapters

  1. Árvai Csaba and László T. Mika* Catalysis in Biomass-based Solvents. In Encyclopedia of Green Chemistry Ed. Béla Török, Elsevier, 2023. in press

  2. Árvai Csaba and László T. Mika* Gamma-valerolactone and related lactones. In Encyclopedia of Green Chemistry Ed. Béla Török, Elsevier, 2023. in press

  3. Árvai Csaba, Bettina Rávai, Erika Bálint, and László T. Mika* Greenness of Solvents. In Encyclopedia of Green Chemistry Ed. Béla Török, Elsevier, 2023. in press

  4. Árvai Csaba, Attial Kondor, Dávid Havasi, and László T. Mika* The Role of Solvents in Green Processes from Sustainability to Economics. In Encyclopedia of Green Chemistry Ed. Béla Török, Elsevier, 2023. in press

  5. László T. Mika and Edit Cséfalvay Conversion of Carbohydrates to Chemicals In Advanced Green Chemistry – Vol. 1 (Ed. Max Malacria), World Scientific Publishing Co. Pte. Ltd., Singapore, 2018. pp 19–76.

  6. László T. Mika and István T. Horváth Fluorous Catalysis in Green Techniques for Organic Synthesis and Medicinal Chemistry (Ed. Wei Zhang), 2nd Ed. Wiley, New York, 2018, pp 219–268.

  7. József M. Tukacs, Bálint Fridrich and László T. Mika Asymmetric Reduction of Ketones to Chiral Platform Molecules, In Advances in Asymmetric Autocatalysis and Related Topics. Eds. G. Pályi, R. Kurdi, C. Zucchi) p. 408, Elsevier Academic Press, Amsterdam, 2017.

  8. László T. Mika and István T. Horváth Fluorous Catalysis in Green Techniques for Organic Synthesis and Medicinal Chemistry (Ed. Wei Zhang) Wiley, New York, 2012, pp. 137-184

  9. László T. Mika and István T. Horváth Hydroformylation and related reactions in aqueous media in Water in Organic Synthesis (Ed. Shu Kobayashi), Thieme Verlag KG, Stuttgart, 2011.

  10. Pátzay György, Tungler Antal, Mika László Tamás, Kémiai Technológia (Chemical Technology), Typotex Kiadó, Budapest, 2011. (ISBN-13 978-963-2794-80-8) in Hungarian

  11. Cséfalvay Edit, Deák András, Farkas Tivadar, Hanák László, Mika László Tamás, Mizsey Péter, Sawinsky János, Simándi Béla, Szánya Tibor, Székely Edit, Vágó Emese, Vegyipari Műveletek II. (Chemical Engineering) Typotex Kiadó, Budapest 2011. (ISBN-13 978-963-2794-87-7) in Hungarian

  12. László T. Mika and Ferenc Ungváry Hydroformlyation – Homogeneous, In: Encyclopedia of Catalysis, (ed. Prof. István T. Horváth), Wiley, New York, NY, USA, 2011. (DOI: 10.1002/0471227617.eoc108.pub2)

  13. Sulfur Trioxide Containing Caprolactamium Hydrogen Sulfate: An Expanded Ionic Liquid for Large Scale Production of e-Caprolactam I. T. Horváth, V. Fábos, D. Lantos, A. Bodor, A.-M. Bálint, L. T. Mika, O. E. Sielcken, and A. D. Cuiper Gas-Expanded Liquids and Near-Critical Media Green Chemistry and Engineering, (Eds. K. W. Hutchenson, A. M. Scurto and B. Subramaniam) 2008, ISBN: 978-0-8412-6971-2

  14. Kinetic Investigation of Hydrogen Peroxide Decomposition in sec-Butanol and in sec-Butanol in the Presence of 1,3-Butadiene, Handbook of Polymer Research, Monomers, Oligomers, Polymers and Copolymers, (Eds: Richard A. Pethrick, Antonio Ballda and G.E. Zaikov) 2007, ISBN: 1-60021-651-X

  15. Technológiai alapműveletek és ipari folyamatok: KÉMIA, (szerk. Prof. Náray-Szabó Gábor), Akadémia Kiadó, Budapest 2006.

  16. Catalytic Conversion of Cabohydrates to Oxygenates. H. Mehdi, R. Tuba, L.T. Mika, A. Bodor, K. Torkos, I. T. Horváth In Renewable Resources and Renewable Energy (ed. M. Graziani and P. Fornasiero). Taylor and Francis Group, 2006.

Invited lectures

  1. A vegyipar szerepe a fenntartható fejlődésben, Budapesti Corvinus Egyetem, Magyarország szerepe a globális fenntarthatósági és klímacélok elérésében, Projekt hét kurzus sorozat 2023. Szeptember 7. (in Hungarian)

  2. Műtrágyák: élhetünk-e nélkülük? Alkímia Ma előadássorozat, ELTE, Budapest, 2023. március 16. (in Hungarian)

  3. Zöld Kémia grammokban és millió tonnákban, MTA Tudomány Ünnepe, Budapest, 2022. November 15. (in Hungarian)

  4. Zöld kémia és a gyógyszeripar, MAGYOSZ Környezetvédelmi Bizottsági ülés, CF Pharma Kft. Budapest, 2022. Szeptember 16. (in Hungarian)

  5. Zöld és fenntartható kémia, Budapesti Corvinus Egyetem, Magyarország szerepe a globális fenntarthatósági és klímacélok elérésében, Projekt hét kurzus sorozat 2022. Szeptember 9. (in Hungarian)

  6. Homogeneous Catalysis in Alternative Solvents, ICCC2022, August 28–September 2, 2022. Rimini, Italy.

  7. Biomassza alapú vegyipar: álom vagy realitás, Borsodi Vegyipari Napok, 2021. November 17. (in Hungarian)

  8. Zöld kémia, Budapesti Corvinus Egyetem, Magyarország szerepe a globális fenntarthatósági és klímacélok elérésében, Projekt hét kurzus sorozat 2021. Szeptember 9. (in Hungarian)

  9. Role of Homogeneous Catalysis in Biomass Conversion, ABCP2021 Conference, Hong Kong, May 11–12, 2021.

  10. Környezetvédelem molekuláris szinten, Szent-Györgyi Alber Szakkolégiumi Konferencia, 2020. (in Hungarian)

  11. Kémia és fenntarthatóság, Budapesti Corvinus Egyetem, Magyarország szerepe a globális fenntarthatósági és klímacélok elérésében, Projekt hét kurzus sorozat 2020. November 7. (in Hungarian)

  12. Régi reakciók – új oldószerek, Pécsi Tudományegyetem, 2020. Október 7. (in Hungarian)

  13. Új kihívások a környezetmérnök képzésben - Z generáció, Egyetemek, Főiskolák Környezetvédelmi Oktatóinak X. Országos Tanácskozása, Pannon Egyetem, 2019. Május 10. (in Hungarian)

  14. Homogeneous Catalysis in Biomass-Based Solvents, International Conference on Green Chemistry and Technology, November 13-15, 2018, Edinburgh, Scotland.

  15. Kémia a vegyész és a mérnök szemével. BME Szent-Györgyi Albert Szakkollégium nyitóülése, 2018. október 2. (in Hungarian)

  16. Biomassza alapú vegyipar: álom vagy realitás. BME VBK 145. évi Jubileumi Konferencia, ünnepi előadás, 2018. június 1. Budapest. (in Hungarian)

  17.  Keresztkapcsolási reakciók ionos folyadékokban. MTA Szervetlen és Fémorganikus Kémia Munkabizottsági ülése, 2018. December 15. Pécs. (in Hungarian)

  18. Biomassza alapú vegyipar: lehetőségek és kihívások. VEAB Kémiai Szakbizottság előadói ülése, 2017. november 15., Veszprém. (in Hungarian)

  19. Valorization of Biomass Wastes to γ-valerolactone and its use as a solvent for catalysis, Int. Conference Renewable Resources: Chemistry, Technology Medicine (RR2017) Saint Petersburg, Russia, September 18-22, 2017.

  20. A kémia szerepe a fenntartható fejlődésben, XIX. Környezetvédelmi és Iparbiztonsági Konferencia, Balatonfüred, Május 17–19, 2017. (in Hungarian)

  21. Gamma-valerolactone based solvents, Asia-Ocenaia Conference on Sustainable and Green Chemistry, Hong Kong, November 27–30, 2016.

  22. Gamma-valerolactone as a renewable solvent for catalysis, 8th Green Solvents Conference, Kiel, Germany, October 16–19, 2016.

  23. Production of Biomass Based Platform Chemicals: Challenges and Opportunities 43rd International Conference of SSCHE, Tatranské Matliare, Slovak Republik, May 23–37, 2016.

  24. Biomass Based Chemical Indutry: Myth or Reality, Young Researchers' International Conference on Chemistry and Chemical Engineering (YRICCCE I). Cluj-Napoca, Romania, May 12–14, 2016.

  25. Megújuló nyersanyagok kémiai átalakítása, XII. Környezetvédelmi Analitikai és Technológiai Konferencia, Balatonszárszó, Október 7–9, 2015. (in Hungarian)

  26. Ruténium alapú katalizátorok fejlesztése a biomassza átalakítására, MTA Szervetlen és fémorganikus Munkabizottság ülés, 2015. November 6. Pécs, Hungary (in Hungarian)

  27. Asymmetric hydrogenation of levulinic aicd: Synthesis of a chiral platform molecule, 3rd International Symposium on the Soai Reaction and Related Topic, Felsőmocsolád, Hungary, September 2–5, 2015.

  28. A kémia szerepe a fenntartható fejlődésben, BASF 150. Anniversary Conference, Budapest, Hungary, April 29, 2015. (in Hungarian)

  29. Biomassza alapú platform molekulák az energiatermelés szolgálatában, KLENEN’15, Budapest, Hungary, March 10-11. 2015. (in Hungarian)

  30. Homogén Katalízis a Biomassza átalakításban, Bruckner-termi előadások, Eötvös University, March 28, 2014. (in Hungarian)

  31. Platform molekulák szerepe a fenntartható fejlődésben, KLENEN–2014, Kecskemét, Hungary, March 11–12, 2014. (in Hungarian)

  32. Improvments in Green and Sustainable Chemistry, 5th International Summer University (ISU – 11), Budapest, Hungary, August 9, 2013.

  33. Platform molekulák cukorcirok alapú szintézise, KLENEN–2013, Siófok, Hungary, March 7–8, 2013. (in Hungarian)

  34. Kémia grammokban és millió tonnákban, Alkímia ma, Eötvös University, Budapest, Hungary, January 26, 2012. (in Hungarian)

Invited seminars

  1. Biomass-based Solvents for Homogeneous Catalysis , Hong Kong Baptist University, Hong Kong, Hong Kong SAR China, November 22, 2023.

  2. Catalysis in Biomass Conversion, Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR China, April 15, 2019.

  3. Biomass-based Solvents for Catalysis, City University of Hong Kong, Hong Kong, Hong Kong SAR China, April 11, 2019.

  4. Biomass-based production of chemical and fuels. University of Bremen, Bremen, Germany, November 30, 2018.

  5. Biomassza alapú vegyipar: álom vagy realitás. MKE Chinoin területi csoport ülése, 2018. szeptember 26. Budapest. (in Hungarian)

  6. Biomass Based Chemical Industry: Challenges and Opportunities. Karlsruhe Institute of Technology, Karlsruhe, Németország, March 13, 2017.

  7. Biomassza alapú vegyipar: álom vagy realitás, BME Energetikai Gépek és Rendszerek Tsz., Magyar Tudomány Ünnepe, 2015. November 20. (in Hungarian)

  8. The role of the catalysis in biomass conversion, University of Groningen, Groningen, The Netherlands, October 23, 2014.

  9. Homogeneous catalysis in biomass conversion, Nanyang Technological University, Singapore, Szeptember 1, 2014.

  10. Homogeneous catalysis in biomass conversion, University of Sydney, Sydney, Australia, August 27, 2014.

  11. The role of the catalysis in biomass conversion, Korea University, Seoul, South Korea, June. 11, 2014.

  12. Catalytic Hydrogenation of Levulinic acid: a key step in biomass conversion, City University of Hong Kong, August 17, 2012.

  13. A biomassza átalakításának kulcslépései, Pécsi Tudományegyetem, 2012. április 27., Pécs.